题目列表(包括答案和解析)
(本小题满分12分)
设椭圆
的离心率
,右焦点到直线
的距离![]()
为坐标原点。
(I)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直线
的距离为定值,并求弦
长度的最小值.
(本小题满分12分)
设椭圆
的离心率
,右焦点到直线
的距离
O为坐标原点。
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值。
(本小题满分12分))已知椭圆C过点
,两个焦点为
,
,O为坐标原点。
(I)求椭圆C的方程;
(2)直线l过 点A(—1,0),且与椭圆C交于P,Q两点,求△BPQ面积的最大值。
(本小题满分12分)
已知点A
,椭圆E:
的离心率为
;F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线
与E 相交于P,Q两点。当
的面积最大时,求
的直线方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com