18.已知数列 (1)求数列的通项公式 (2)设 已知等比数列的前n项和为 (1)求数列的通项公式 (2)若 查看更多

 

题目列表(包括答案和解析)

(理)已知函数f(x)=(0<x<1)的反函数为f-1(x),设它在点(n,f-1(n))(n∈N*)处

的切线在Y轴上的截距为bn,数列{an}满足:a1=2,an+1=f-1(an)(n∈N*).

(1)求数列{an}的通项公式;

(2)在数列{}中,仅当n=5时,取最小值,求A的取值范围;

(3)令函数g(x)=f-1(x)(1+x)2,数列{cn}满足:c1=,cn+1=g(cn)(n∈N*),求证:对于一切

n≥2的正整数,都满足:1<<2.

(文)已知函数f(x):(0<x<1)的反函数为f-1(x),数列{an}满足:a1=2,an+1=f-1(an) (n∈N*).

(1)求数列{an}的通项公式;

(2)设函数g(x)=f-1(x)(1+x)2在点(n,g(n))(n∈N*)处的切线在Y轴上的截距为bn,求数列{bn}的通项公式;

(3)在数列{bn+}中,仅当n=5时,bn+取最大值,求λ的取值范围.

查看答案和解析>>

(理)已知一列非零向量a n,n∈N*,满足:a1=(10,-5), a n=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)(n≥2),其中k是非零常数.

(1)求数列{| a n|}的通项公式;

(2)求向量a n-1a n的夹角(n≥2);

(3)当k=时,把a 1, a 2,…, a n,…中所有与a 1共线的向量按原来的顺序排成一列,记为b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O为坐标原点,求点列{Bn}的极限点B的坐标.〔注:若点坐标为(tn,sn),且tn=t,sn=s,则称点B(t,s)为点列的极限点〕

(文)设函数f(x)=5x-6,g(x)=f(x).

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);

(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.

查看答案和解析>>

(理)已知函数f(x)=x,g(x)=ln(1+x),h(x)=.

(1)证明当x>0时,恒有f(x)>g(x);

(2)当x>0时,不等式g(x)>(k≥0)恒成立,求实数k的取值范围;

(3)在x轴正半轴上有一动点D(x,0),过D作x轴的垂线依次交函数f(x)、g(x)、h(x)的图象于点A、B、C,O为坐标原点.试将△AOB与△BOC的面积比表示为x的函数m(x),并判断m(x)是否存在极值,若存在,求出极值;若不存在,请说明理由.

(文)已知函数f(x)=,x∈(0,+∞),数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=1,bn+1=,其中Sn为数列{bn}的前n项和,n=1,2,3,….

(1)求数列{an}和数列{bn}的通项公式;

(2)设Tn=,证明Tn<3.

查看答案和解析>>

(理)已知:fn(x)=a1x+a2x2+…+anxn,fn(-1)=(-1)n·n,n=1,2,3,….

(1)求a1、a2、a3;

(2)求数列{an}的通项公式;

(3)求证:fn()<1.

(文)设函数f(x)=2ax3-(6a+3)x2+12x(a∈R),

(1)当a=1时,求函数f(x)的极大值和极小值;

(2)若函数f(x)在区间(-∞,1)上是增函数,求实数a的取值范围.

查看答案和解析>>

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.

(1)求数列{an}的通项公式;

(2)(只文科生做)求数列{}的前n项和Sn

(只理科生做)设数列{}的前n项和为Tn,证明Tn

查看答案和解析>>


同步练习册答案