10.数列中,数列中...在直角坐标平面内.已知点列.则向量的坐标为 ( ) A.(.8) B. (.8) C. (.8) D. (.8) 查看更多

 

题目列表(包括答案和解析)

在直角坐标系中,定义:(xnyn)
11
1-1
=(xn+1yn+1)
,即
xn+1=xn+yn
yn+1=xn-yn
(n∈N*)为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换.我们把它称为点变换(或矩阵变换).已知P1(1,0).
(1)求直线y=x在矩阵变换下的直线方程;
(2)设dn=|OPn|2(n∈N*),求证:dn为等比数列,并写出dn的通项公式;
(3)设P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是经过点变换得到的一列点.求数列xn,yn的通项公式.

查看答案和解析>>

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

在直角坐标系中横纵坐标为整数的点称为“格点”,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为k阶格点函数,下列函数中“一阶格点”函数有(  )
①f(x)=π(x-1)2-1;②f(x)=20101-x;③f(x)=ln(x+1);④f(x)=sin
πx
2
-2010
A、①③B、②③C、①④D、②④

查看答案和解析>>

在直角坐标平面xOy上的一列点A1(1,a1),?A2(2,a2),?…,?An(n,an),?…,简记为{An}、若由bn=
AnAn+1
j
构成的数列{bn}满足bn+1>bn,n=1,2,…,其中
j
为方向与y轴正方向相同的单位向量,则称{An}为T点列,
(1)判断A1( 1,  1),?A2( 2,  
1
2
),?A3( 3,  
1
3
),?…,?
An( n, 
1
n
 ),?…
,是否为T点列,并说明理由;
(2)若{An}为T点列,且点A2在点A1的右上方、任取其中连续三点Ak、Ak+1、Ak+2,判断△AkAk+1Ak+2的形状(锐角三角形、直角三角形、钝角三角形),并予以证明;
(3)若{An}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:
AnAq
j
AmAp
j

查看答案和解析>>

在直角坐标系xOy中,若直线l1:y=kx+1沿x轴向左平移1个单位,再沿y轴向上平移
3
个单位,回到原来的位置,直线l2过(4,0)且与l1垂直,以O为圆心的圆O与直线l2相切
(1)求圆O方程;
(2)圆O与x轴交于A,B两点,P为圆内一动点,P关于x轴的对称点为Q,且|PQ|2,|PO|2,|OA|2成等差数列,求
PA
PB
的取值范围.

查看答案和解析>>


同步练习册答案