22.已知函数是在上每一点处可导的函数.若在上恒成立. 求证:函数在上单调递增, 求证:当时.有 求证: 查看更多

 

题目列表(包括答案和解析)

设函数是在上每一点处可导的函数,若上恒成立.回答下列问题:

(I)求证:函数上单调递增;

(II)当时,证明:

(III)已知不等式时恒成立,求证:

查看答案和解析>>

(20分)已知函数是在上每一点处均可导的函数,若上恒成立。
(1)①求证:函数上是增函数;
②当时,证明:
(2)已知不等式时恒成立,求证:

查看答案和解析>>

(20分)已知函数是在上每一点处均可导的函数,若上恒成立。

(1)①求证:函数上是增函数;

②当时,证明:

(2)已知不等式时恒成立,求证:

 

查看答案和解析>>

(20分)已知函数是在上每一点处均可导的函数,若上恒成立。
(1)①求证:函数上是增函数;
②当时,证明:
(2)已知不等式时恒成立,求证:

查看答案和解析>>

已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求证:函数g(x)=
f(x)
x
在(0,+∞)上单调递增;
(Ⅱ)当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,证明:
1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N+).

查看答案和解析>>


同步练习册答案