题目列表(包括答案和解析)
(本小题满分14分)已知函数
=
,
.
(1)求函数
在区间
上的值域;
(2)是否存在实数
,对任意给定的
,在区间
上都存在两个不同的
,使得
成立.若存在,求出
的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数
图象上任意不同的两点
,如果对于函数
图象上的点
(其中
总能使得
成立,则称函数具备性质“
”,试判断函数
是不是具备性质“
”,并说明理由.
已知函数
=
,
.
(Ⅰ)求函数
在区间
上的值域;
(Ⅱ)是否存在实数
,对任意给定的
,在区间
上都存在两个不同的
,使得
成立.若存在,求出
的取值范围;若不存在,请说明理由;
(Ⅲ)给出如下定义:对于函数
图象上任意不同的两点
,如果对于函数
图象上的点
(其中
总能使得
成立,则称函数具备性质“
”,试判断函数
是不是具备性质“
”,并说明理由.
(08年乌鲁木齐诊断性测验二)(12分) 函数![]()
,
、
是其图象上任意不同的两点.
(1)求直线
的斜率的取值范围;
(2)求函数
图象上一点
到直线
、 直线
距离之积的最大值.
(本题满分12分)
函数![]()
,
、
是其图象上任意不同的两点.(1)求直线
的斜率的取值范围;
(2)求函数
图象上一点
到直线
、 直线
距离之积的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com