题目列表(包括答案和解析)
.(本小题满分12分)
已知数列
满足:
,
,
.计算得
,
.
(1)猜想
的通项公式
,并用数学归纳法加以证明;
(2)用反证法证明数列
中不存在成等差数列的三项.
(本小题满分12分)
已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由.
(本小题满分12分)
已知数列
的前
项和为
,对一切正整数
,点
都在函数
的图像上.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,求数列
的通项公式.
(本小题满分12分)
已知数列{an}的前n项和为Sn,点
在直线
上.数列{bn}满足
,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设
,数列{cn}的前n和为Tn,求使不等式
对一切
都成立的最大正整数k的值.
(本小题满分12分)
已知数列
和
满足:
,
其中
为实数,
为正整数.
(1)对任意实数
,证明数列
不是等比数列;
(2)试判断数列
是否为等比数列,并证明你的结论;
(3)设
,
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com