题目列表(包括答案和解析)
((12分)(本小题满分14分)已知圆O:
直线
。
(I)求圆O上的点到直线
的最小距离。
(II)设圆O与
轴的两交点是F1、F2,若从F1发出的光线经
上的点M反射后过点F2,求以F1、F2为焦点且经过点M的椭圆方程。
|
(2012年高考广东卷理科20)(本小题满分14分)
在平面直角坐标系xOy中,已知椭圆C1:
的离心率e=
,且椭圆C上的点到Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。
本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。K^S*5U.C#O
(1)(本小题满分7分)选修4-2:矩阵与变换
已知向量
=
,变换T的矩阵为A=
,平面上的点P(1,1)在变换T
作用下得到点P′(3,3),求A4
.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直线
与圆
(
>0)相交于A、B两点,设
P(-1,0),且|PA|:|PB|=1:2,求实数
的值![]()
(3)(本小题满分7分)选修4-5:不等式选讲K^S*5U.C#O
对于x∈R,不等式|x-1|+|x-2|≥
2+
2恒成立,试求2
+
的最大值。
本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵M=
,N=
,且MN=
。
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
=2
sin
。
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,
),求∣PA∣+∣PB∣。
(3)(本小题满分7分)选修4-5:不等式选讲
已知函数f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x)
3的解集为
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com