7. 设R.函数有意义, 实数m取值范围 . 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

设函数f(x)=ax3+bx+c是定义在R上的奇函数,且函数f(x)的图象在x=1处的切线方程为y=3x+2.
(1)求a,b,c的值;
(2)若对任意x∈(0,1]都有f(x)≤
kx
成立,求实数k的取值范围;
(3)若对任意x∈(0,3]都有|f(x)-mx|≤16成立,求实数m的取值范围.

查看答案和解析>>

设函数f(x)的定义域为D,若存在非零数l使得对于任意x∈M(M⊆D)有x+l∈D且f(x+l)≥f(x),则称f(x)为M上的l高调函数.现给出下列命题:
①函数f(x)=(
12
)
x
为R上的1高调函数;
②函数f(x)=sin2x为R上的π高调函数
③如果定义域为[1,+∞)的函数f(x)=x2为[-1,+∞)上m高调函数,那么实数m的取值范围是[2,+∞)其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

设函数f(x)=ax3+bx+c是定义在R上的奇函数,且函数f(x)的图象在x=1处的切线方程为
x=-
2
3
+
1
3
t
y=t
(t为参数)

(Ⅰ)求a,b,c的值;
(Ⅱ)若对任意x∈(0,1]都有f(x)≤
k
x
成立,求实数k的取值范围;
(Ⅲ)若对任意x(0,3]都有|f(x)-mx|≤16成立,求实数m的取值范围.

查看答案和解析>>

设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,有f(x)>1;
(2)判断f(x)在R上的单调性;
(3)设集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.

查看答案和解析>>


同步练习册答案