题目列表(包括答案和解析)
(14分)已知函数f(x)=
的图像在点P(0,f(0))处的切线方程为y=3x-2
(Ⅰ)求实数a,b的值;
(Ⅱ)设g(x)=f(x)+
是[
)上的增函数。
(i)求实数m的最大值;
(ii)当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,写出点Q的坐标(可以不必说明理由);若不存在,说明理由。
(本小题满分12分)
设椭圆
的离心率
,右焦点到直线
的距离![]()
为坐标原点。
(I)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直线
的距离为定值,并求弦
长度的最小值.
(本小题满分12分)
设椭圆
的离心率
,右焦点到直线
的距离
O为坐标原点。
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值。
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有点
在直线y=5x+1上,记
(n∈N*)。(I)求数列
的通项公式;(II)记
,设
,求证:对任意正整数
都有
;(III)设
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题(本大题12小题,每小题5分,共60分。在每小题经出的四个选项中,只有一项是符合题目要求的。))
1―5DCBAC 6―10BCADB 11―12BB
二、填空题(本大题共4个小题,每小题5分,共20分。将符合题意的答案填在题后的横线上)
13.2 14.70 15.
16..files\image136.gif)
三、解答题:本大题共6个小题,共70分。解答应写出文字说明,证明过程或演算步骤。
17.解:(I)
…………4分
.files\image142.gif)
…………6分
(II).files\image146.gif)
.files\image148.gif)
…………8分
.files\image154.gif)
.files\image156.gif)
…………10分
18.解:(I)设通晓英语的有
人,
且
…………1分
则依题意有:.files\image164.gif)
…………3分
所以,这组志愿者有
人。…………4分
(II)所有可能的选法有
种…………5分
A被选中的选法有
种…………7分
A被选中的概率为
…………8分
(III)用N表示事件“B,C不全被选中”,则
表示事件“B,C全被选中”……10分
则
…………11分
所以B和C不全被选中的概率为
……12分
说明:其他解法请酌情给分。
|