e.e为基底向量.已知向量=e-ke..若A.B.D三点共线.则k的值是A A.2 B.-3 txjy C.-2 D.3 查看更多

 

题目列表(包括答案和解析)

已知圆C:x2+y2=2,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量
OQ
=t
OA
+(1-t)
OB
(t∈R,t≠0)

(1)求动点Q的轨迹E的方程;
(2)当t=
2
2
时,过点S(0,-
1
3
)的动直线l交轨迹E于A,B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过T点?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

已知圆,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量.

   (1)求动点Q的轨迹E的方程;

   (2)当时,设动点Q关于x轴的对称点为点P,直线PD交轨迹E于点F(异于P点),证明:直线QF与x轴交于定点,并求定点坐标.

查看答案和解析>>

设向量,点为动点,已知,且点P的轨迹C1。若抛物线C2的顶点在原点,与轨迹C1共焦点F,设抛物线C2与轨迹C1的交点分别为M、N。

   (1)分虽求轨迹为C1与抛物线C2的方程;

   (2)过F作一条与轴不垂直的直线,与曲线C1在点M、N左侧的部分交于C、D两点,与曲线C2在点M、N左侧的部分交于B、E两点,若G为CD的中点,H为BE的中点,问是否为定值?若是,求出定值;若不是,请说明理由。

查看答案和解析>>

已知椭圆E:
x2
5
+
y2
3
=1

(1)在直线l:x-y+2=0上取一点P,过点P且以椭圆E的焦点为焦点的椭圆中,求长轴最短的椭圆C的方程;
(2)设P,Q,R,N都在椭圆C上,F为右焦点,已知
PF
FQ
RF
FN
PF
RF
=0,求四边形PRQN面积S的取值范围.

查看答案和解析>>

给出下列四个结论:
①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是x2=
4
3
y

②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的准线方程为y=-
1
4a

④已知双曲线
x2
4
+
y2
m
=1
,其离心率e∈(1,2),则m的取值范围是(-12,0).
其中所有正确结论的个数是(  )

查看答案和解析>>


同步练习册答案