题目列表(包括答案和解析)
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数
、
、
满足
,则称
比
远离
.
(1)若
比1远离0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
远离
;
(3)已知函数
的定义域
.任取
,
等于
和
中远离0的那个值.写出函数
的解析式,并指出它的基本性质(结论不要求证明).
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知
是公差为d的等差数列,
是公比为q的等比数列。
(1)若
,是否存在
,有
?请说明理由;
(2)若
(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(3)若
试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明。
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com