题目列表(包括答案和解析)
20. (本小题满分13分)
已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,
,且
.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且
,则称b为数列{bn}的“上渐近值”,令
,求数列
的“上渐近值”.
1. (本小题满分13分)
已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,
,且
.
(1) 求a的值;
(2) 试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;
(3) 对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且
,则称b为数列{bn}的“上渐近值”,令
,求数列
的“上渐近值”.
(本小题满分13分).已知数列{an}的前n项和为Sn,首项为a1,且1,an,Sn成等差数列(n∈N+)
(1)求数列{an}的通项公式;
(2)设Tn为数列{
}的前n项和,若对于
成立,
其中m∈N+,求m的最小值.
(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n
都有Sn=.
(1)证明:数列{an}为等差数列;(2)记
bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com