已知函数f(x)=是定义在上的奇函数.且f()=. (Ⅰ)确定函数f(x)的解析式, (Ⅱ)判定函数f(x)在上的单调性.并用定义加以证明, (Ⅲ)若f (t-1)+f(t)<0.求实数t的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数f(x)=lg(ax-bx)(a>1>b>0).

(1)求y=f(x)的定义域;

 (2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;

 (3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

 

查看答案和解析>>

(本小题满分12分)

已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2).

(1)求g(x)的解析式及定义域;

(2)求函数g(x)的最大值和最小值.

 

查看答案和解析>>

(本小题满分12分)
已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2).
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

(本小题满分12分)
已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2).
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)-h(x2)|≤a|x1x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

查看答案和解析>>


同步练习册答案