22. 设( (1)求的值, (2)求证:数列是等比数列; (3)设数列的前n项和为 的大小. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设函数. (1) 判断在区间上的增减性并证明之;(2) 若不等式恒成立, 求实数的取值范围M;(3)设,若,求证:.

查看答案和解析>>

(本小题满分14分)

设函数.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;

(Ⅲ)记为函数的导函数.若

试问:在区间上是否存在 ()个正数,使得成立?请证明你的结论.

 

查看答案和解析>>

(本小题满分14分)  设函数.

(Ⅰ)当时,求函数的单调区间和极大值点;

(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;

(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

 

查看答案和解析>>

.(本小题满分14分)

设函数.其中为常数.

(Ⅰ)证明:对任意的图象恒过定点;

(Ⅱ) 设,若为定义域上的增函数,求的最大值;

(Ⅲ)当时,函数是否存在极值?若存在,求出极值;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分14分)

设函数有两个极值点,且

(I)求的取值范围,并讨论的单调性;

(II)证明:            

 

查看答案和解析>>


同步练习册答案