题目列表(包括答案和解析)
(本小题满分14分)设函数
. (1) 判断
在区间
上的增减性并证明之;(2) 若不等式
≤
≤
对
恒成立, 求实数
的取值范围M;(3)设
≤
≤
,若
,求证:
≥
.
(本小题满分14分)
设函数
.
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)已知
,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记
为函数
的导函数.若
,
试问:在区间
上是否存在
(![]()
)个正数
…
,使得
成立?请证明你的结论.
(本小题满分14分) 设函数
.
(Ⅰ)当
时,求函数
的单调区间和极大值点;
(Ⅱ)已知
,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记
为函数
的导函数.若
,试问:在区间
上是否存在
(![]()
)个正数
…
,使得
成立?请证明你的结论.
.(本小题满分14分)
设函数
.其中
为常数.
(Ⅰ)证明:对任意
,
的图象恒过定点;
(Ⅱ)
设
,若
为定义域
上的增函数,求
的最大值;
(Ⅲ)当
时,函数
是否存在极值?若存在,求出极值;若不存在,说明理由.
(本小题满分14分)
设函数
有两个极值点
,且![]()
(I)求
的取值范围,并讨论
的单调性;
(II)证明:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com