题目列表(包括答案和解析)
(本小题满分14分)
如图,已知椭圆
的左、右焦点分别为
短轴两的端点为A、B,且四边形
是边长为2的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若C、D分别是椭圆长轴的左、右端点,动点M满足MD
连结
交椭圆于点
证明:
为定值;
(Ⅲ)在(Ⅱ)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,说明理由.
(本小题满分14分)
如图7,已知椭圆
:
的离心率为
,以椭圆
的左顶点
为
圆心作圆
:
,设圆
与椭圆
交于点
与点
.
(1)求椭圆
的方程;
(2)求
的最小值,并求此时圆
的方程;
(3)设点
是椭圆
上异于
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值.
(本小题满分14分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交椭圆于A、B两个不同点。
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形。
![]()
(本小题满分14分)
如图,已知椭圆![]()
过点(1,
),离心率为
,左右焦点分别为
.点
为直线
:
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
和
为坐标原点.
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
、
斜率分别为![]()
.
(ⅰ)证明:![]()
(ⅱ )问直线
上是否存在一点
,使直线
的斜率
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
(本小题满分14分)
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交椭圆于A、B两个不同点。
![]()
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com