为二面角B-PD-C的平面角. ---------------------------7分 查看更多

 

题目列表(包括答案和解析)

如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求证:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二问中解:取PD的中点E,连接CE、BE,

为正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,

∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD
,若E、F分别为PC、BD的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求二面角B-PD-C的正切值.

查看答案和解析>>

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD
,若E、F分别为PC、BD的中点.
(Ⅰ) EF∥平面PAD;
(Ⅱ) 求证:平面PDC⊥平面PAD;
(Ⅲ) 求二面角B-PD-C的正切值.

查看答案和解析>>

(2013•天津模拟)如图在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD,设E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:面PAB⊥平面PDC;
(Ⅲ) 求二面角B-PD-C的正切值.

查看答案和解析>>

(本小题满分12分)

如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点,

(1)证明:EF∥面PAD;

(2)证明:面PDC⊥面PAD;

(3)求锐二面角B—PD—C的余弦值.

 

 

查看答案和解析>>


同步练习册答案