5.已知ABC平面上动点P.满足.则P点的轨迹过ABC的A.内心 B.垂心 C.重心 D.外心 查看更多

 

题目列表(包括答案和解析)

已知△ABC中,=a=b,对于平面ABC上任意一点O,动点P满足=ab,则动点P的轨迹是什么?其轨迹是否过定点,并说明理由.

查看答案和解析>>

已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
,则点P一定为三角形ABC的(  )
A、AB边中线的中点
B、AB边中线的三等分点(非重心)
C、重心
D、AB边的中点

查看答案和解析>>

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

已知O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
,λ∈[0,+∞),则动点P的轨迹一定通过△ABC的(  )

查看答案和解析>>

已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,l∈[0,+∞).则P点的轨迹一定通过△ABC的(    )

A.重心            B.垂心            C.内心              D.外心

查看答案和解析>>

 

一:选择题:BCAAD   CCCBA  CC

 

二:填空题:

20090109

三:解答题

17.解:(1)由已知

   ∴ 

   ∵  

∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

    又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

所以                                                                                    

(2)在△ABC中,   

            

        

     而   

如果

    

                                                                   

                                  

18.解:(1)点A不在两条高线上,

 不妨设AC边上的高:,AB边上的高:

所以AC,AB的方程为:

,即

由此可得直线BC的方程为:

(2)

由到角公式得:

同理可算

19.解:(1)令

   则,因

故函数上是增函数,

时,,即

   (2)令

    则

    所以在(,―1)递减,(―1,0)递增,

(0,1)递减,(1,)递增。

处取得极小值,且

故存在,使原方程有4个不同实根。

20.解(1)连结FO,F是AD的中点,

*  OFAD,

EO平面ABCD

由三垂线定理,得EFAD,

AD//BC,

EFBC                          

连结FB,可求得FB=PF=,则EFPB,

PBBC=B,

 EF平面PBC。 

(2)连结BD,PD平面ABCD,过点E作EOBD于O,

连结AO,则EO//PD

且EO平面ABCD,所以AEO为异面直线PD、AE所成的角              

E是PB的中点,则O是BD的中点,且EO=PD=1

在Rt△EOA中,AO=

   所以:异面直线PD与AE所成的角的大小为

(3)取PC的中点G,连结EG,FG,则EG是FG在平面PBC内的射影

* PD平面ABCD,

* PDBC,又DCBC,且PDDC=D,

BC平面PDC

* BCPC,

EG//BC,则EGPC,

FGPC

所以FGE是二面角F―PC―B的平面角                                   

在Rt△FEG中,EG=BC=1,GF=

所以二面角F―PC―B的大小为   

21.解(1), 

   ,令

所以递增

,可得实数的取值范围为

(2)当时,

   所以:

即为 

可化为

由题意:存在时,

恒成立

只要

 

所以:

,知

22.证明:(1)由已知得

  

(2)由(1)得

=