题目列表(包括答案和解析)
|
|
|
|
(本题满分为12分)
如图所示:已知
⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作
于E,求证:
.
(本题满分为12分)已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
.
![]()
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段
所成的比为2,求线段AB所在直线的方程.
(本题满分15分)如图,已知直线
与抛物线
和圆
都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M点所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P、Q两点,求△NPQ的面积S的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com