10.函数的图象的交点个数为 A.1 B.2 C.3 D.4 查看更多

 

题目列表(包括答案和解析)

直线与函数的图象的交点个数为(    )

A.个    B.个    C.个    D.

查看答案和解析>>

直线与函数的图象的交点个数为(    )

A.个    B.个    C.个    D.

查看答案和解析>>

直线与函数的图象的交点个数为(   )
A.B.C.D.

查看答案和解析>>

函数数学公式的图象为C1,C1关于点A(2,1)的对称图形为C2,C2对应的函数为g(x):
(1)求函数g(x)的解析式;
(2)若直线y=b与C2只有一个公共点,求b的值及交点坐标.

查看答案和解析>>

函数的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象( )
A.向左平移个单位
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位

查看答案和解析>>

 

1.D  2.B  3.D  4.B  5.A  6.B  7.C  8.B  9.A  10.C

11.    12.    13.3    14.    15.①②④

16.解:(1)由题意,得 ………………2分

解不等式组,得……4分

   (2)                                                      ………………6分

                                                 ………………7分

上是增函数。                                                ………………10分

                                                         ………………12分

17.解:(1)

不在集合A中。                                                         ………………3分

,                      ………………5分

上是减函数,

在集合A中。                                        ………………8分

   (2)当,          ………………11分

又由已知

因此所求的实数k的取值范围是                              ………………12分

18.解:(1)当

                                   ………………2分

,                                                         ………………5分

                  ………………6分

定义域为                                           ………………7分

   (2)对于,                        

显然当(元),                                         ………………9分

∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多。…………12分

19.解:(1)选取的5只恰好组成完整“奥运吉祥物”的概率

                                                        ………………4分

   (2)                                                ………………5分

                                                   ………………9分

ξ的分布列为

ξ

100

80

60

40

P

                                                                                               ………………11分

                                      ………………13分

20.解:(1)恒成立,

从而              ………………4分

   (2)由(1)可知

由于是单调函数,

                   ………………8分

   (3)

上是增函数,

                                                                                               ………………12分

21.(1)证明:①因为

当且仅当

因为       ………………3分

②因为,由①得    (i)

下面证明:对于任意成立。

    根据(i)、(ii)得                                                    ………………9分

   (2)解:由

从而

因为

                                                                                               ………………11分

                                                               ………………14分

 

 


同步练习册答案