2.若满足的实数x都满足x<m.则m的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)满足:对任意实数a、b都有f(a•b)=af(b)+bf(a).
(1)求证:f(x)为奇函数;
(2)设f(-
1
2
)=
1
2
,记an=f(2n),n∈N*,求数列{an}的前n项和Sn
(3)若对一切实数x,均有|f(x)|≤1,试证:?x∈R,f(x)=0.

查看答案和解析>>

已知函数f(x)满足:对任意实数a、b都有f(a•b)=af(b)+bf(a).
(1)求证:f(x)为奇函数;
(2)设数学公式,记an=f(2n),n∈N*,求数列{an}的前n项和Sn
(3)若对一切实数x,均有|f(x)|≤1,试证:?x∈R,f(x)=0.

查看答案和解析>>

已知函数f(x)=,g(x)=
(1)当t=8时,求函数y=f(x)-g(x)的单调区间:
(2)求证:当t>0时f(x)≥g(x)对任意正实数x都成立;
(3)若存在正实数x,使得g(x)≤4x-对任意正实数t都成立,请直接写出满足这样条件的-个x的值(不必给出求解过程).

查看答案和解析>>

若满足的实数x都满足x<m,则m的取值范围是            .

查看答案和解析>>

若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(Ⅰ)已知函数f(x)=
x2+mx+mx
的图象关于点(0,1)对称,求实数m的值;
(Ⅱ)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(Ⅲ)在(Ⅰ)、(Ⅱ)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>


同步练习册答案