21.设函数 (1)当时.求曲线处的切线方程, (2)当时.求的极大值和极小值, (3)若函数在区间上是增函数.求实数a的取值范围. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=-x(x-a)2
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若a>0,且方程f(x)+a=0有三个不同的实数解,求a的取值范围.

查看答案和解析>>

设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a>3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k2-cos2x)对任意的x∈R恒成立.

查看答案和解析>>

设函数f(x)=2x2+bln(x+1),其中b≠0.
(1)当b=-1时,求在曲线y=f(x)上一点(0,f(0)处的切线方程;
(2)求函数f(x)的极值点.

查看答案和解析>>

设函数f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=
1
3
时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

设函数f(x)=xekx(k≠0).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当k>0时,求函数f(x)的单调区间;
(3)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

查看答案和解析>>


同步练习册答案