16.设m.n是不同的直线.α.β.γ是不同的平面.有以下四个命题 查看更多

 

题目列表(包括答案和解析)

8、设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,?n?α,则m∥α其中真命题的序号是(  )

查看答案和解析>>

设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
(1)
α∥β
α∥γ
?β∥γ

(2)
α⊥β
m∥α
?m⊥β

(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α

其中假命题有
 

查看答案和解析>>

6、设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
(1)若n∥α,m∥β,α∥β,则n∥m;   (2)若m⊥α,n∥α,则m⊥n
(3)若α⊥γ,β⊥γ,则α∥β;         (4)若α∥β,β∥γ,m⊥α,则m⊥γ
其中真命题的个数是(  )

查看答案和解析>>

设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
(1)
α∥β
α∥γ
?β∥γ

(2)
α⊥β
m∥α
?m⊥β

(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α

其中,假命题是(  )
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ         
②若α⊥β,m∥α,则m⊥β
③若m?α,n⊥β,α∥β,则m⊥n   
④若m∥n,n?α,则m∥α
其中真命题的序号是
①③
①③

查看答案和解析>>

 

一、选择题(本大题共12小题,每小题5分,共60分。

1―5 BBACB    6―10 ADCDD    11―12 AB

二、填空题(本大题共4小题,每小题6分,共16分,

13.14   14.2   15.30   16.①③

三、解答题(本大题共6小题,共计76分)

17.解:(1)  …………2分

   (2)由题设, …………10分

 …………12分

18.解:(1)记“第一次与第二次取到的球上的号码的和是4”为事件A,则

 …………5分

所以第一次与第二次取到的地球上的号码的和是4的概率 …………6分

   (2)记“第一次与第二次取到的上的号码的积不小于6”为事件B,则

  …………11分

19.解法一:(1)∵E,F分别是AB和PB的中点,

∴EF∥PA  …………1分

又ABCD是正方形,∴CD⊥AD,…………2分

由PD⊥底面ABCD得CD⊥PD,CD⊥面PAD,

∴CD⊥PA,∴EF⊥CD。 …………4分

 

 

   (2)设AB=a,则由PD⊥底面ABCD及ABCD是正方形可求得

   (3)在平面PAD内是存在一点G,使G在平面PCB

上的射影为△PCB的外心,

G点位置是AD的中点。  …………9分

证明如下:由已知条件易证

Rt△PDG≌Rt△CDG≌Rt△BAG,…………10分

∴GP=GB=GC,即点G到△PBC三顶点的距离相等。 ……11分

∴G在平面PCB上的射影为△PCB的外心。 …………12分

解法二:以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图)。

   (1)

  …………4分

 

 

   (2)设平面DEF的法向量为

   (3)假设存在点G满足题意

20.解:(1)设

   (2)

21.(1)令 …………1分

  …………2分

   (2)设

   (3)由

∴不等式化为  …………6分

由(2)已证 …………7分

①当

②当不成立,∴不等式的解集为 …………10分

③当

22.解:(1)  …………1分

   (2)设

①当

②当