题目列表(包括答案和解析)
.(本小题满分13分)
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(Ⅰ)求椭圆
及其“准圆”的方程;
(Ⅱ)若椭圆
的“准圆”的一条弦
(不与坐标轴垂直)与椭圆
交于
、
两点,试证明:当
时,试问弦
的长是否为定值,若是,求出该定值;若不是,请说明理由.
. (本小题满分13分)已知点
是椭圆
上的一点,
,
是椭圆的两个焦点,且满足
.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点
,
是椭圆上的两点,直线
,
的倾斜角互补,试判断直线
的斜率是否为定值?并说明理由.
(本小题满分13分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的
左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭
圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点
分别 为
和![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?
若存在,求
的值;若不存在,请说明理由.
(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线
与椭圆交于A,B两点,
的面积为4,
的周长为
(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com