题目列表(包括答案和解析)
已知函数
, ![]()
![]()
(Ⅰ)
时,求
的极小值;
(Ⅱ)若函数
与
的图象在
上有两个不同的交点
,求
的取值范围.
(12分)若
,
,其中
,函数
,且
的图象关于直线
对称.
(1)求
的解析式及
的单调区间;
(2)将
的图象向左平移
个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的
的图象;若函数
,
的图象与
的图象有三个交点且交点的横坐标成等比数列,求
的值.
(本小题满分10分)已知函数
的图象过原点,且
在
、
处取得极值.
(Ⅰ)求函数
的单调区间及极值;
(Ⅱ)若函数
与
的图象有且仅有一个公共点,求实数
的取值范围.
(本小题满分12分) 已知函数
.
(1) 设F(x)=
在
上单调递增,求
的取值范围。
(2)若函数
与
的图象有两个不同的交点M、N,求
的取值范围;
(3)在(2)的条件下,过线段MN的中点作
轴的垂线分别与
的图像和
的图像交S、T点,以S为切点作
的切线
,以T为切点作
的切线
.是否存在实数
使得![]()
![]()
,如果存在,求出
的值;如果不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com