题目列表(包括答案和解析)
(本题满分12分)
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.
(本题满分15分)已知a∈R,函数f (x) =
x3 +
ax2 + 2ax (x∈R). (Ⅰ)当a = 1时,求函数f (x)的单调递增区间; (Ⅱ)函数 f (x) 能否在R上单调递减,若是,求出 a的取值范围;若不能,请说明理由; (Ⅲ)若函数f (x)在[-1,1]上单调递增,求a的取值范围.
| a |
| x |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| n |
| k=1 |
| 1 |
| 4 |
| en |
| n! |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com