题目列表(包括答案和解析)
(本小题满分12分)如图,已知椭圆C:
,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(1)是否存在k,使对任意m>0,总有
成立?若存在,求出所有k的值;
(2)若
,求实数k的取值范围.
(本小题满分13分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线L在y轴上的截距为m(m≠0),L交椭圆于A、B两个不同点。
(1)求椭圆的方程;
![]()
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形。
(本大题18分)
(1)已知平面上两定点
.
,且动点M标满足
=0,求动点
的轨迹方程;
(2)若把(1)的M的轨迹图像向右平移一个单位,再向下平移一个单位,恰与直线x+ky–3=0 相切,试求实数k的值;
(3)如图,l是经过椭圆
长轴顶点A且与长轴垂直的直线,E.F是两个焦点,点PÎl,P不与A重合。若ÐEPF=
,求
的取值范围。
并将此题类比到双曲线:
,
是经过焦点
且与实轴垂直的直线,
是两个顶点,点PÎl,P不与
重合,请作出其图像。若
,写出角
的取值范围。(不需要解题过程)
![]()
(本小题满分14分)已知椭圆
经过点M(2,1),O为坐标原点,平行于OM的直线l在y轴上的截距为m(m≠0)
(1)当
时,判断直线l与椭圆的位置关系;
(2)当
时,P为椭圆上的动点,求点P到直线l距离的最小值;
(3)如图,当l交椭圆于A、B两个不同点时,求证:
直线MA、MB与x轴始终围成一个等腰三角形
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com