熟记基本导数公式,掌握两个函数和.差.积.商的求导法则,了解复合函数的求导法则,会求某些简单复合函数的导数.重难点聚焦重点:理解导数的概念及常见函数的导数难点:理解导数与复合函数的导数.高考分析及预测在高考中,常以选择或填空的形式考查导数的概念,及几何意义,也以解答题的形式考查与切线有关的综合性题目,难度不大.再现型题组 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax2+ln(x+1).
(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

参考导数公式:(ln(x+1))=
1
x+1

查看答案和解析>>

如图,一艘渔船停泊在距岸9 km的A处,今需派人送信给距渔船3 km处的海岸渔站C,若送信人步行速度为每小时5 km,船速为每小时4 km,问在何处上岸,可以使抵站的时间最省?[参考导数公式()′=·

查看答案和解析>>

已知函数f(x)=-x3+3x2+9xa.

(1)求f(x)的单调递减区间;

(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

思路 本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.

查看答案和解析>>

如右图,一艘渔船停泊在距岸9 km的A处,今需派人送信给距渔船3 km处的海岸渔站C,若送信人步行速度为每小时5 km,船速为每小时4 km,问在何处上岸,可以使抵站的时间最省?〔参考导数公式()′=·f′(x)〕

查看答案和解析>>

(本小题满分12分)

已知函数

(1)求;         (2)求的最大值与最小值.

【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。

第二问中,利用第一问的导数,令导数为零,得到

然后结合导数,函数的关系判定函数的单调性,求解最值即可。

 

查看答案和解析>>


同步练习册答案