又由于在[-2.-1]上单调递减. 查看更多

 

题目列表(包括答案和解析)

已知动点的轨迹是曲线,满足点到点的距离与它到直线的距离之比为常数,又点在曲线上.

(1)求曲线的方程;

(2)已知直线与曲线交于不同的两点,求实数的取值范围.

查看答案和解析>>

(本小题满分12分)

已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.

(1)求椭圆的方程;

(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.

 

查看答案和解析>>

已知函数f(x)=ax3-3x2+(c+3)x+c+8 在x=-2 时有极值1
(1)极值1是极大值还是极小值,说明理由,并求出f(x) 的另一个极值;
(2)过点A(0,10)作函数f (x)图象的切线l,求直线l与函数g(x)=f(x)+x3-x 的图象围成的平面图形的面积.

查看答案和解析>>

如图,抛物线y=-
1
2
x2
上有两点A(x1,y1)、B(x2,y2),且
OA
OB
=0
,又
OM
=(0,-2)

(1)求证:
AM
AB

(2)若
MA
=-2
MB
,求AB所在直线方程.

查看答案和解析>>

已知函数f(x)=mx3-x2+nx+13(m、n∈R).
(1)若函数f(x)在x=-2与x=1时取得极值,求m、n的值;
(2)当m=n=0时,若f(x)在闭区间[a,b](a<b)上有最小值4a,最大值4b,求区间[a,b].

查看答案和解析>>


同步练习册答案