题目列表(包括答案和解析)
先阅读下列不等式的证法,再解决后面的问题:已知
,
,求证
.
证明:构造函数
,![]()
因为对一切
,恒有
≥0,所以
≤0,从而得
,
(1)若
,
,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
先阅读下列不等式的证法,再解决后面的问题:已知
,
,求证
.
证明:构造函数
,![]()
因为对一切
,恒有
≥0,所以
≤0,从而得
,
(1)若
,
,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
先阅读下列不等式的证法,再解决后面的问题:已知
,
,求证
.
证明:构造函数
,![]()
因为对一切
,恒有
≥0,所以
≤0,从而得
,
(1)若
,
,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
(本小题15分)
先阅读下列不等式的证法,再解决后面的问题:已知
且
,求证![]()
证明:构造函数
因为对一切
,恒有
,所以
4-8
,从而![]()
(1)若
,且
,请写出上述结论的推广式;
(2)参考上述证法,对你的结论加以证明;
(3)若
,求证![]()
![]()
![]()
.[
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com