题目列表(包括答案和解析)
设向量
,
,其中
,由不等式
恒成立,可以证明(柯西)不等式
(当且仅当
∥
,即
时等号成立),己知
,若
恒成立,利用可西不等式可求得实数
的取值范围是
设向量
,
,其中
,由不等式
恒成立,可以证明(柯西)不等式
(当且仅当
∥
,即
时等号成立),己知
,若
恒成立,利用可西不等式可求得实数
的取值范围是
一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为
,则长为![]()
所以矩形的面积
(
) (4分
=128 (8分)
当且仅当
时,即
时等号成立,此时
有最大值128
所以当矩形的长为
=16,宽为8时,
菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)
| |x-y| | 1+|x-y| |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com