法一:.由和及 得: 查看更多

 

题目列表(包括答案和解析)

函数y=Asin(ωx+φ),(A>0, ω>0, |φ|<
π
2
)
的最小值是-2,在一个周期内图象最高点与最低点横坐标差是3π,又:图象过点(0,1),
求(1)函数解析式,并利用“五点法”画出函数的图象;
(2)函数的最大值、以及达到最大值时x的集合;
(3)该函数图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩得到?
(4)当x∈(0,
2
)
时,函数的值域.

查看答案和解析>>

用随机抽样的方法从高一(1)班和高一(2)班中各抽取10名男生,测得他们的身高分别为(单位:cm):

高一(1)班:

162

168

175

177

180

176

177

173

177

169

高一(2)班:

167

182

174

178

183

160

173

164

165

178

(1)分别计算两班10名男生的平均身高及标准差.

(2)若要由一个班组成仪仗队,你建议由哪班组成,为什么?

查看答案和解析>>

用随机抽样的方法从高一(1)班和高一(2)班中各抽取10名男生,测得他们的身高分别为(单位:cm)

高一(1)班:

162

168

175

177

180

176

177

173

177

169

高一(2)班:

167

182

174

178

183

160

173

164

165

178

(1)分别计算两班10名男生的平均身高及标准差.

(2)若要由一个班组成仪仗队,你建议由哪班组成,为什么?

查看答案和解析>>

“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20-80mg/100ml(不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.”某市交警在该市一交通岗前设点对过往的车辆进行抽查,经过一晚的抽查,共查出酒后驾车者60名,图甲是用酒精测试仪对这60 名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.
(1)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S值,并说明S的统计意义;(图乙中数据mi与fi分别表示图甲中各组的组中值及频率)
(2)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度属于70-90mg/100ml的范围,但他俩坚称没喝那么多,是测试仪不准,交警大队队长决定在被酒精测试仪测得酒精浓度属于70-90mg/100ml范围的酒后驾车者中随机抽出2人抽血检验,ξ为吴、李两位先生被抽中的人数,求ξ的分布列,并求吴、李两位先生至少有1人被抽中的概率;
(3)很多人在喝酒后通过喝茶降解体内酒精浓度,但李时珍就曾指出酒后喝茶伤肾.为研究长期酒后喝茶与肾损伤是否有关,某科研机构采集了统计数据如下表,请你从条件概率的角度给出判断结果,并说明理由.
没有肾损伤 有肾损伤
长期酒后喝茶 2099 49
酒后不喝茶 7775 42

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>


同步练习册答案