的证明可知.均为正数的充要条件是于是问题转化为证明为三角形三条边的充要条件为条件的必要性: 查看更多

 

题目列表(包括答案和解析)

如图,已知圆轴负半轴的交点为. 由点出发的射线的斜率为. 射线与圆相交于另一点

(1)当时,试用表示点的坐标;

(2)当时,求证:“射线的斜率为有理数”是“点为单位圆上的有理点”的充要条件;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为,其中均为整数且互质)

(3)定义:实半轴长、虚半轴长和半焦距都是正整数的双曲线为“整勾股双曲线”.

为有理数且时,试证明:一定能构造偶数个“整勾股双曲线”(规定:实轴长和虚轴长都对应相等的双曲线为同一个双曲线),它的实半轴长、虚半轴长和半焦距的长恰可由点的横坐标、纵坐标和半径的数值构成. 说明你的理由并请尝试给出构造方法.

查看答案和解析>>


同步练习册答案