证:略[评析]这个题当时答案是用坐标法的距离公式证明的.但是距离公式是由勾股定理推导出的.因而形成“因为A--所以A 的循环论证错误.而得出一般用拼图法得到,拼图法能否算作证明还在争论中.但当年多数省市按错对待.结论:数形结合的方法得到的结论不能以证明题的形式出现. 查看更多

 

题目列表(包括答案和解析)

设点是抛物线的焦点,是抛物线上的个不同的点().

(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若

求证:

(3) 当时,某同学对(2)的逆命题,即:

“若,则.”

开展了研究并发现其为假命题.

请你就此从以下三个研究方向中任选一个开展研究:

① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);

② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);

③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).

【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

【解析】第一问利用抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.

由抛物线定义得到

第二问设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

第三问中①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

解:(1)抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得

 

因为,所以

故可取满足条件.

(2)设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

   又因为

所以.

(3) ①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

.

是一个当时,该逆命题的一个反例.(反例不唯一)

② 设,分别过

抛物线的准线的垂线,垂足分别为

及抛物线的定义得

,即.

因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则

,所以.

(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)

③ 补充条件1:“点的纵坐标)满足 ”,即:

“当时,若,且点的纵坐标)满足,则”.此命题为真.事实上,设

分别过作抛物线准线的垂线,垂足分别为,由

及抛物线的定义得,即,则

又由,所以,故命题为真.

补充条件2:“点与点为偶数,关于轴对称”,即:

“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)

 

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

已知数列满足,

(1)求证:数列是等比数列;

(2)求数列的通项和前n项和

【解析】第一问中,利用,得到从而得证

第二问中,利用∴ ∴分组求和法得到结论。

解:(1)由题得 ………4分

                    ……………………5分

   ∴数列是以2为公比,2为首项的等比数列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

((本小题共13分)

若数列满足,数列数列,记=.

(Ⅰ)写出一个满足,且〉0的数列

(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;

(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5

(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5

(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。

 

 

查看答案和解析>>


同步练习册答案