题目列表(包括答案和解析)
(本小题满分14分)
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数)。
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[
,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。
(本小题16分)已知a>0,函数f(x)=ax-bx2.
(I)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2
;
(II)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2
;
(III)当0<b≤1时,讨论:对任意x∈[0,1],|f(x)|≤1的充要条件.
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数)。
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[
,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。
| 1 |
| 3 |
| 1-a |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com