(III)当a<0时.由2x+ax2>0.解得0<x<-, 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数)。

(I)求实数b的值;

(II)求函数f(x)的单调区间;

(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。

查看答案和解析>>

(本小题16分)已知a>0,函数fx)=axbx2.

(I)当b>0时,若对任意x∈R都有fx)≤1,证明a≤2

(II)当b>1时,证明:对任意x∈[0,1],|fx)|≤1的充要条件是b-1≤a≤2

(III)当0<b≤1时,讨论:对任意x∈[0,1],|fx)|≤1的充要条件.

  

查看答案和解析>>

已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数)。

(I)求实数b的值;

(II)求函数f(x)的单调区间;

(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。

查看答案和解析>>

设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的极大值和极小值;
(III)当a=2时,是否存在函数y=f(x)图象上两点以及函数y=f′(x)图象上两点,使得以这四点为顶点的四边形ABCD同时满足如下三个条件:①四边形ABCD是平行四边形:②AB⊥x轴;③|AB|=4.若存在,指出四边形ABCD的个数;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=
1
3
x3+
1-a
2
x2-ax-a,其中a>0.
(I)求函数f(x)的单调区间;
(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数f(x)在区间[t,t+3](t∈[-3,-1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,1]上的最小值.

查看答案和解析>>


同步练习册答案