4.定义在R上的函数f.当x∈[1.3],f(x)=2-|x-2|, 则下列结论中正确的是 查看更多

 

题目列表(包括答案和解析)

定义在R上的函数f(x)满足f(x+2)=f(x),当x∈[0,2]时,f(x)=(
12
)|x-m|

(1)求m的值;
(2)设g(x)=log2x,证明:方程f(x)=g(x)只有一个实数解.

查看答案和解析>>

定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值是(    )

A.-1            B.           C.               D.

查看答案和解析>>

定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则(  )

(A)f(sin)<f(cos)       (B)f(sin1)>f(cos1)

(C)f(cos)<f(sin)      (D)f(cos2)>f(sin2)

 

查看答案和解析>>

定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则(  )

A.f(sin)<f(cos) B.f(sin1)>f(cos1)
C.f(cos)<f(sin) D.f(cos2)>f(sin2)

查看答案和解析>>

定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则(  )
A.f(sin)<f(cos)B.f(sin1)>f(cos1)
C.f(cos)<f(sin)D.f(cos2)>f(sin2)

查看答案和解析>>

一、选择题(每题5分,共60分):

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

理D

文A

B

D

D

B

A

B

A

C

理D

文A

D

A

二、填空题(每题4分,共16分):

13.1   14.  15.;   16. 24。

三、解答题(本大题共6小题,共74分):

17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx

∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x

         =1+2sin(2x+)(x≠kπ k∈Z) ……(6分)

(1)f(x)的周期T=………………(8分)

(2)当sin(2x+)= -1 x= +kπ (k∈Z)时,f(x)=1-2…………(10分)

此时x的集合为{x|x= +kπ,k∈Z)………………(12分)

18、解:(1)P=1-……(4分)

(2)要使值为整数       当a=1时,(a,b)=(1,1),(1,2),(1,4)

当a=2时,(a,b)=(2,1),(2,4)    当a=3时,(a,b)=(3,1),(3,6)

a=4,5,6时,(a,b)分别为(4,1)(5,1)(6,1)       共10种        ……(10分)

故所求概率为P== ……………………(12分)

19、(1)当λ=时,面BEF⊥面ACD  …(2分)

证明如下:==   EF∥CD

       CD⊥面ABC ,又CD∥EF

  面BEF⊥面ACB           ……………  (6分)

(2)作EO⊥CF于O,连BO

   BE⊥面EFC

∴EO为BO在面EFC内射影∴BO⊥CF

∴∠EOB为二面角E-CF-B的平面角…………(8分)

在RtΔEFC中EO?CF=EC?EF

    EO?= ?  EO=

在Rt△BOE中,BE=  EO=………………(10分)

∴ ∠EOB= =  ∴ ∠EOB=60°故二面角E-CF-B的大小为60°(12分)

20、解(1)f '(x)=+x (x>0)

若a≥0,则f ' (x)>0  f(x)在(0,+∞)递增………(2分)

若a<0,令f ' (x)=0 x =±

f ' (x)=>0, 又x>0x∈(,+∞)

f ' (x)<0  x∈(0,

∴f(x)的递增区间为(,+∞),递减区间为(0,)……(6分)

(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)

则φ ' (x)= +x==

令φ ' (x)=0 x=1………………………………(8分)

当0<x<1时,φ ' (x)>0φ (x)递增      当x>1时,φ ' (x)<0    φ (x)递减

∴x=1时φ (x)=-+=0……………………(10分)

∴φ (x)≤0 即f (x)≤g(x)     ∴a=1时的f(x)图象不在g(x)图象上方………(12分)

22.解:((1) 可设, 得= tan

          ==

(2) 设,     得直线的方程为

方程     = -

      所以      所以有

         所以

=(             

(3) 证明:当时,   

左边=           

=

   


同步练习册答案