6.M为△ABC内一点.且.则△ABM与△ABC的面积之比为 查看更多

 

题目列表(包括答案和解析)

已知O为△ABC内一点,D为BC中点,且
OA
+
OB
+
OC
=0
,则
OA
=
-2
-2
OD

查看答案和解析>>

在△ABC中,D为AB上一点,M为△ABC内一点,且满足
AD
=
3
4
AB
AM
=
AD
+
3
5
BC
,则△AMD与△ABC的面积比为(  )
A、
9
25
B、
4
5
C、
9
16
D、
9
20

查看答案和解析>>

已知O为△ABC内一点,且
OA
+
OC
+2
OB
=0
,则△AOC与△ABC的面积之比是(  ).
A、1:2B、1:3
C、2:3D、1:1

查看答案和解析>>

精英家教网设P为△ABC内一点,且
AP
=
2
5
AB
+
1
5
AC
,则△ABP的面积与△ABC面积之比为
 

查看答案和解析>>

已知P为△ABC内一点,且
PB
+
PC
+2
PA
=
0
,现随机将一颗豆子撒在△ABC内,则豆子落在△PBC内的概率为
1
2
1
2

查看答案和解析>>

一、选择题(每题5分,共60分):

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

理D

文A

B

D

D

B

A

B

A

C

理D

文A

D

A

二、填空题(每题4分,共16分):

13.1   14.  15.;   16. 24。

三、解答题(本大题共6小题,共74分):

17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx

∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x

         =1+2sin(2x+)(x≠kπ k∈Z) ……(6分)

(1)f(x)的周期T=………………(8分)

(2)当sin(2x+)= -1 x= +kπ (k∈Z)时,f(x)=1-2…………(10分)

此时x的集合为{x|x= +kπ,k∈Z)………………(12分)

18、解:(1)P=1-……(4分)

(2)要使值为整数       当a=1时,(a,b)=(1,1),(1,2),(1,4)

当a=2时,(a,b)=(2,1),(2,4)    当a=3时,(a,b)=(3,1),(3,6)

a=4,5,6时,(a,b)分别为(4,1)(5,1)(6,1)       共10种        ……(10分)

故所求概率为P== ……………………(12分)

19、(1)当λ=时,面BEF⊥面ACD  …(2分)

证明如下:==   EF∥CD

       CD⊥面ABC ,又CD∥EF

  面BEF⊥面ACB           ……………  (6分)

(2)作EO⊥CF于O,连BO

   BE⊥面EFC

∴EO为BO在面EFC内射影∴BO⊥CF

∴∠EOB为二面角E-CF-B的平面角…………(8分)

在RtΔEFC中EO?CF=EC?EF

    EO?= ?  EO=

在Rt△BOE中,BE=  EO=………………(10分)

∴ ∠EOB= =  ∴ ∠EOB=60°故二面角E-CF-B的大小为60°(12分)

20、解(1)f '(x)=+x (x>0)

若a≥0,则f ' (x)>0  f(x)在(0,+∞)递增………(2分)

若a<0,令f ' (x)=0 x =±

f ' (x)=>0, 又x>0x∈(,+∞)

f ' (x)<0  x∈(0,

∴f(x)的递增区间为(,+∞),递减区间为(0,)……(6分)

(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)

则φ ' (x)= +x==

令φ ' (x)=0 x=1………………………………(8分)

当0<x<1时,φ ' (x)>0φ (x)递增      当x>1时,φ ' (x)<0    φ (x)递减

∴x=1时φ (x)=-+=0……………………(10分)

∴φ (x)≤0 即f (x)≤g(x)     ∴a=1时的f(x)图象不在g(x)图象上方………(12分)

22.解:((1) 可设, 得= tan

          ==

(2) 设,     得直线的方程为

方程     = -

      所以      所以有

         所以

=(             

(3) 证明:当时,   

左边=           

=

   


同步练习册答案