8.在等差数列{an}中.前n项和.前m项和.则的值A.大于4 B.等于4 C.小于4 D.大于2小于4 查看更多

 

题目列表(包括答案和解析)

在等差数列{an}中,前n项和Sn,前m项和Sm,其中m≠n,则Sm+n

[  ]
A.

大于4

B.

等于4

C.

小于4

D.

大于2且小于4

查看答案和解析>>

在等差数列{an}中,若Sm=Sn(m≠n),则下列命题中正确的是:(  )
A、该数列的前
m+n
2
项的和达到最大值
B、该数列的前
m+n
2
项的和达到最小值
C、当m、n≥2时,Sm-1与Sn-1不一定相等
D、Sm+n=0

查看答案和解析>>

在等差数列{an}中,a1=1,am=15,前m项的和Sm=64.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(
1
2
)
an
 
,且数列{bn}的前n项和Tn<M对一切n∈N+恒成立,求实数M的取值范围.

查看答案和解析>>

在等差数列{an}中,a3a4a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.

查看答案和解析>>

在等差数列{an}中,给出以下结论:

恒有:a2a8a10

数列{an}的前n项和公式不可能是Snn

mnlkN*,则mnlkamanalak成立的充要条件;

a112S6S11,则必有a90,其中正确的是(  )

A①②③ B②③ C②④ D

 

查看答案和解析>>

一、选择题(每题5分,共60分):

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

理D

文A

B

D

D

B

A

B

A

C

理D

文A

D

A

二、填空题(每题4分,共16分):

13.1   14.  15.;   16. 24。

三、解答题(本大题共6小题,共74分):

17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx

∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x

         =1+2sin(2x+)(x≠kπ k∈Z) ……(6分)

(1)f(x)的周期T=………………(8分)

(2)当sin(2x+)= -1 x= +kπ (k∈Z)时,f(x)=1-2…………(10分)

此时x的集合为{x|x= +kπ,k∈Z)………………(12分)

18、解:(1)P=1-……(4分)

(2)要使值为整数       当a=1时,(a,b)=(1,1),(1,2),(1,4)

当a=2时,(a,b)=(2,1),(2,4)    当a=3时,(a,b)=(3,1),(3,6)

a=4,5,6时,(a,b)分别为(4,1)(5,1)(6,1)       共10种        ……(10分)

故所求概率为P== ……………………(12分)

19、(1)当λ=时,面BEF⊥面ACD  …(2分)

证明如下:==   EF∥CD

       CD⊥面ABC ,又CD∥EF

  面BEF⊥面ACB           ……………  (6分)

(2)作EO⊥CF于O,连BO

   BE⊥面EFC

∴EO为BO在面EFC内射影∴BO⊥CF

∴∠EOB为二面角E-CF-B的平面角…………(8分)

在RtΔEFC中EO?CF=EC?EF

    EO?= ?  EO=

在Rt△BOE中,BE=  EO=………………(10分)

∴ ∠EOB= =  ∴ ∠EOB=60°故二面角E-CF-B的大小为60°(12分)

20、解(1)f '(x)=+x (x>0)

若a≥0,则f ' (x)>0  f(x)在(0,+∞)递增………(2分)

若a<0,令f ' (x)=0 x =±

f ' (x)=>0, 又x>0x∈(,+∞)

f ' (x)<0  x∈(0,

∴f(x)的递增区间为(,+∞),递减区间为(0,)……(6分)

(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)

则φ ' (x)= +x==

令φ ' (x)=0 x=1………………………………(8分)

当0<x<1时,φ ' (x)>0φ (x)递增      当x>1时,φ ' (x)<0    φ (x)递减

∴x=1时φ (x)=-+=0……………………(10分)

∴φ (x)≤0 即f (x)≤g(x)     ∴a=1时的f(x)图象不在g(x)图象上方………(12分)

22.解:((1) 可设, 得= tan

          ==

(2) 设,     得直线的方程为

方程     = -

      所以      所以有

         所以

=(             

(3) 证明:当时,   

左边=           

=

   


同步练习册答案