如图,在三棱锥A-BCD中.∠BCD=90°,BC=CD=AB=1.AB⊥面BCD.E为AC中点.F在线段AD上.=λ.(Ⅰ)当λ为何值时.面BEF⊥面ACB.并证明,的条件下.求二面角E-CF-B的大小. 查看更多

 

题目列表(包括答案和解析)

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角

1)求证:AB⊥平面BCD

2)求三棱锥D-ABC的体积

3)求点C到平面ABD的距离

查看答案和解析>>

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角

(1)求证:AB⊥平面BCD

(2)求三棱锥D-ABC的体积

(3)求点C到平面ABD的距离

查看答案和解析>>

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角

1)求证:AB⊥平面BCD

2)求三棱锥D-ABC的体积

3)求点C到平面ABD的距离

查看答案和解析>>

在三棱锥D-ABC中,AC=BC=CD=2,CD⊥平面BCD,∠ACB=90°.若其主视图,俯视图如图所示,则其左视图的面积为

[  ]
A.

B.

2

C.

D.

查看答案和解析>>

如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90(如图2所示).

(Ⅰ)当BD的长为多少时,三棱锥A-BCD的体积最大;

(Ⅱ)当三棱锥A=BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

一、选择题(每题5分,共60分):

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

理D

文A

B

D

D

B

A

B

A

C

理D

文A

D

A

二、填空题(每题4分,共16分):

13.1   14.  15.;   16. 24。

三、解答题(本大题共6小题,共74分):

17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx

∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x

         =1+2sin(2x+)(x≠kπ k∈Z) ……(6分)

(1)f(x)的周期T=………………(8分)

(2)当sin(2x+)= -1 x= +kπ (k∈Z)时,f(x)=1-2…………(10分)

此时x的集合为{x|x= +kπ,k∈Z)………………(12分)

18、解:(1)P=1-……(4分)

(2)要使值为整数       当a=1时,(a,b)=(1,1),(1,2),(1,4)

当a=2时,(a,b)=(2,1),(2,4)    当a=3时,(a,b)=(3,1),(3,6)

a=4,5,6时,(a,b)分别为(4,1)(5,1)(6,1)       共10种        ……(10分)

故所求概率为P== ……………………(12分)

19、(1)当λ=时,面BEF⊥面ACD  …(2分)

证明如下:==   EF∥CD

       CD⊥面ABC ,又CD∥EF

  面BEF⊥面ACB           ……………  (6分)

(2)作EO⊥CF于O,连BO

   BE⊥面EFC

∴EO为BO在面EFC内射影∴BO⊥CF

∴∠EOB为二面角E-CF-B的平面角…………(8分)

在RtΔEFC中EO?CF=EC?EF

    EO?= ?  EO=

在Rt△BOE中,BE=  EO=………………(10分)

∴ ∠EOB= =  ∴ ∠EOB=60°故二面角E-CF-B的大小为60°(12分)

20、解(1)f '(x)=+x (x>0)

若a≥0,则f ' (x)>0  f(x)在(0,+∞)递增………(2分)

若a<0,令f ' (x)=0 x =±

f ' (x)=>0, 又x>0x∈(,+∞)

f ' (x)<0  x∈(0,

∴f(x)的递增区间为(,+∞),递减区间为(0,)……(6分)

(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)

则φ ' (x)= +x==

令φ ' (x)=0 x=1………………………………(8分)

当0<x<1时,φ ' (x)>0φ (x)递增      当x>1时,φ ' (x)<0    φ (x)递减

∴x=1时φ (x)=-+=0……………………(10分)

∴φ (x)≤0 即f (x)≤g(x)     ∴a=1时的f(x)图象不在g(x)图象上方………(12分)

22.解:((1) 可设, 得= tan

          ==

(2) 设,     得直线的方程为

方程     = -

      所以      所以有

         所以

=(             

(3) 证明:当时,   

左边=           

=

   


同步练习册答案