(Ⅱ)函数 .求证a=1时的f图象的上方. 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数y=f(x)的一个等值域变换.
有下列说法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,则x=g(t)不是f(x)的一个等值域变换;
②f(x)=|x|(x∈R),x=log3(t2+1),(t∈R),则x=g(t)是f(x)的一个等值域变换;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,则x=g(t)是f(x)的一个等值域变换;
④设f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一个等值域变换,且函数f(g(t))的定义域为R,则m的取值范围是m≤-2.
在上述说法中,正确说法的个数为(  )

查看答案和解析>>

如图,是一位骑自行车和一位骑摩托车在相距80km的两城间行驶的函数图象;其中骑自行车用了6小时(含途中休息1小时),骑摩托车用了2小时.
(1)有人根据这个图象,提出关于两人的信息如下:
①骑自行车比骑摩托车早出发3小时,晚到2小时;
②骑自行车是变速运动,骑摩托车是匀速运动;
③骑摩托车在出发1.5小时后追上骑自行车的,其中正确的序号为?
(2)设骑自行车和骑摩托车的人所对应函数分别为f(x),g(x);求f(x),g(x)解析式,并写出定义域;
(3)定义函数?(x)=g(
x2-2x+a40
+3)
在[3,,5]有零点,求实数a的最大值、最小值.

查看答案和解析>>

(2013•丰台区一模)已知函数f(x)=
1
x+a
,g(x)=bx2+3x.
(1)设函数h(x)=f(x)-g(x),且h(1)=h′(1)=0求a,b的值;
(2)当a=2且b=4时,求函数φ(x)=
g(x)
f(x)
的单调区间,并求该函数在区间(-2,m](-2<m≤
1
4
)上的最大值.

查看答案和解析>>

设函数f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么,称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列x=g(t)是不是f(x)的一个等值域变换?说明你的理由:(A)f(x)=2x+b,x∈R,x=t2-2t+3,t∈R;(B)f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)设f(x)=log2x(x∈R+),g(t)=at2+2t+1,若x=g(t)是f(x)的一个等值域变换,求实数a的取值范围,并指出x=g(t)的一个定义域;
(3)设函数f(x)的定义域为D,值域为B,函数g(t)的定义域为D1,值域为B1,写出x=g(t)是f(x)的一个等值域变换的充分非必要条件(不必证明),并举例说明条件的不必要性.

查看答案和解析>>

设函数f(x)的定义域为A,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数f(x)的一个等值域变换?说明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)设函数f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函数x=g(t)是函数f(x)的一个等值域变换,求实数a的取值范围.

查看答案和解析>>

一、选择题(每题5分,共60分):

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

理D

文A

B

D

D

B

A

B

A

C

理D

文A

D

A

二、填空题(每题4分,共16分):

13.1   14.  15.;   16. 24。

三、解答题(本大题共6小题,共74分):

17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx

∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x

         =1+2sin(2x+)(x≠kπ k∈Z) ……(6分)

(1)f(x)的周期T=………………(8分)

(2)当sin(2x+)= -1 x= +kπ (k∈Z)时,f(x)=1-2…………(10分)

此时x的集合为{x|x= +kπ,k∈Z)………………(12分)

18、解:(1)P=1-……(4分)

(2)要使值为整数       当a=1时,(a,b)=(1,1),(1,2),(1,4)

当a=2时,(a,b)=(2,1),(2,4)    当a=3时,(a,b)=(3,1),(3,6)

a=4,5,6时,(a,b)分别为(4,1)(5,1)(6,1)       共10种        ……(10分)

故所求概率为P== ……………………(12分)

19、(1)当λ=时,面BEF⊥面ACD  …(2分)

证明如下:==   EF∥CD

       CD⊥面ABC ,又CD∥EF

  面BEF⊥面ACB           ……………  (6分)

(2)作EO⊥CF于O,连BO

   BE⊥面EFC

∴EO为BO在面EFC内射影∴BO⊥CF

∴∠EOB为二面角E-CF-B的平面角…………(8分)

在RtΔEFC中EO?CF=EC?EF

    EO?= ?  EO=

在Rt△BOE中,BE=  EO=………………(10分)

∴ ∠EOB= =  ∴ ∠EOB=60°故二面角E-CF-B的大小为60°(12分)

20、解(1)f '(x)=+x (x>0)

若a≥0,则f ' (x)>0  f(x)在(0,+∞)递增………(2分)

若a<0,令f ' (x)=0 x =±

f ' (x)=>0, 又x>0x∈(,+∞)

f ' (x)<0  x∈(0,

∴f(x)的递增区间为(,+∞),递减区间为(0,)……(6分)

(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)

则φ ' (x)= +x==

令φ ' (x)=0 x=1………………………………(8分)

当0<x<1时,φ ' (x)>0φ (x)递增      当x>1时,φ ' (x)<0    φ (x)递减

∴x=1时φ (x)=-+=0……………………(10分)

∴φ (x)≤0 即f (x)≤g(x)     ∴a=1时的f(x)图象不在g(x)图象上方………(12分)

22.解:((1) 可设, 得= tan

          ==

(2) 设,     得直线的方程为

方程     = -

      所以      所以有

         所以

=(             

(3) 证明:当时,   

左边=           

=

   


同步练习册答案