题目列表(包括答案和解析)
()(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的
倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
如图,
,
分别为
的边
,
上的点,且不与
的顶点重合。已知
的长为
,AC的长为n,
,
的长是关于
的方程
的两个根。![]()
(1)证明:
,
,
,
四点共圆;
(2)若
,且
,求
,
,
,
所在圆的半径。
如图,四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部分都是平地,P是弧TS上一点,现有一位开发商想在平 地上建造一个两边落在BC与CD上的长方形停车场PQCR.
|
(Ⅰ)若∠PAT=θ,试写出四边形RPQC的面积S关于θ
的函数表达式,并写出定义域;
(Ⅱ)试求停车场的面积最大值。
如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
,
![]()
(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com