(Ⅱ)依题意.某人参加B种竞猜活动.结束时答题数=1.2.-,6. 查看更多

 

题目列表(包括答案和解析)

(2012•甘肃一模)(理科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

(2012•甘肃一模)(文科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用a表示该学生选修的课程门数和没有选修的课程门数的乘积,记“f(x)=x2+ax为R上的偶函数”为事件A,求事件A发生的概率.

查看答案和解析>>

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>

某村计划建造一个室内面积为的矩形蔬菜温室。在温室内,沿左、右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

【解析】本试题考查了实际生活中的最值问题的运用,首先确定设矩形温室的长为xm,则宽为800/xm。

依题意有:种植面积:

运用导数的思想得到最值。

设矩形温室的长为xm,则宽为800/xm。

依题意有:种植面积:

                 

答:当矩形温室的长为20m,宽为40m时种植面积最大,最大种植面积是m2

 

查看答案和解析>>

(理科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求随机变量ξ的分布列和数学期望.

查看答案和解析>>


同步练习册答案