∴当a≤0时,不存在x0>0,使f(x0)>0. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(I) 当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a>3时,在区间[-1,0]上是否存在实数k使不等式f(k-cosx)≥f(k2-cos2x)对任意的x∈R恒成立,若存在,求出k的值,若不存在,说明理由.

查看答案和解析>>

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

设函数f(x)=(2-a)lnx+
1
x
+2ax.
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a≠0时,求f(x)的单调区间;
(Ⅲ)当a=2时,对任意的正整数n,在区间[
1
2
,6+n+
1
n
]上总有m+4个数使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

查看答案和解析>>

关于函数f(x)=ln(x2+ax-a+1),有以下四个结论
(1)当a=0时,f(x)的值域为[0,+∞);
(2)f(x)不可能是增函数;
(3)f(x)不可能是奇函数;
(4)存在a,使得f(x)的图象是轴对称的.其中正确的个数是(  )

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx

(1)当a=b=
1
2
时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)当a≠0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,则是否存在点R,使C1在点M处的切线与C2在点N处的切线平行?如果存在,请求出R的横坐标,如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案