如图.在底面是菱形的四棱锥P―ABCD中.∠ABC=60°.PA=AC=a.PB=PD=.点E在PD上.且PE : ED=2 : 1. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,点E是PD的中点.
(I)证明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC为棱,EAC与DAC为面的二面角θ的正切值.

查看答案和解析>>

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,点E在PD上,且PE:ED=2:1,
(1)求四棱锥P-ABCD的体积;
(2)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大小:
(Ⅱ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

如图,在底面是菱形的四棱锥P-ABCD,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,点E是PD的中点.证明:
(Ⅰ)PA⊥平面ABCD;
(Ⅱ)PB∥平面EAC.

查看答案和解析>>

 

一、选择题

1.C  2.A  3.D  4.C  5.B  6.C  7.D  8.B  9.A  10.C  11.B  12.B

1,3,5

13.   14.=0   15.-   16.3

三、解答题

17.解:(1)∵  ……2分

   …………4分

……6分

(2)由 ……8分

,故tanB=2  …………10分

18.解:(1)设取出的球不放回袋中,第3次取球才得到红球的概率为P1

   ………………6分

(2)设取出的球放回袋中,第3次取球才得到红球的概率P2

   ………………12分

19.(1)证明:∵底面ABCD是菱形,且∠ABC=60°

∴AB=AD=AC=a,在△PAB中,由PA2+AB2=2a=PB2得PA⊥AB,

同理得PA⊥AD, ∴PA⊥平面ABCD

(2)作EG//PA交AD于G,由PA⊥平面ABCD知EG⊥平面ABCD,

作GH//AC于H,连结EH,则EH⊥AC,∴∠EHG为二面角的平面角 ……8分

∵PE:ED=2:1, ∴EG=,……10分

    …………12分

20.(本小题12分)

解:(Ⅰ)∵

的公比为的等比数列 …………3分

又n=1时, ……6分

(Ⅱ)∵   …………8分

   ……   ……10分

以上各式相加得:]

  …………12分

21.(本小题12分)

解:(Ⅰ)由题意,设双曲线方程为  ……2分

,∴方程为 …4分

(Ⅱ)由消去y得 ……7分

当k=2时得

     

  ……10分

当k=-2时同理得

综上:∠MFN为直角.   …………12分

22.解:(1)   …………2分

上为单调函数,而不可能恒成立

所以上恒成立,

   …………6分

(2)依题意,方程有两个不同的实数根

   ……9分

            

所以

所以 

综上:  ………………12分