题目列表(包括答案和解析)
给出下列四个命题:
①若函数
在区间
上为减函数,则
;
②函数
的定义域是
;
③当
且
时,有
;
④若M是圆
上的任意一点,则点M关于直线
的对称点
也在该圆上。
所有正确命题的序号是 。
(08年哈六中)给出下列四个命题:
①若函数
在区间
上为减函数,则![]()
②函数
的定义域是![]()
③当
且
时,有![]()
④圆
上任意一点
关于直线
的对称点M’也在该圆上。所有正确命题的题号为_____________.
某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数
与时刻
(时) 的关系为
,其中
是与气象有关的参数,且
.
(1)令
,
,写出该函数的单调区间,并选择其中一种情形进行证明;
(2)若用每天
的最大值作为当天的综合放射性污染指数,并记作
,求
;
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
【解析】第一问利用定义法求证单调性,并判定结论。
第二问(2)由函数的单调性知
,
∴
,即t的取值范围是
.
当
时,记![]()
则
∵
在
上单调递减,在
上单调递增,
第三问因为当且仅当
时,
.
故当
时不超标,当
时超标.
某校从参加高三年级理科综合物理考试的学生中随机抽出
名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在
内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的
平均分;
(Ⅲ)若从
名学生中随机抽取
人,抽到的学生成绩在
记
分,在
记
分,
在
记
分,用
表示抽取结束后的总记分,求
的分布列和数学期望.
![]()
【解析】(1)中利用直方图中面积和为1,可以求解得到分数在
内的频率为![]()
(2)中结合平均值可以得到平均分为:![]()
(3)中用
表示抽取结束后的总记分x, 学生成绩在
的有
人,在
的有
人,在
的有
人,结合古典概型的概率公式求解得到。
(Ⅰ)设分数在
内的频率为
,根据频率分布直方图,则有
,可得
,所以频率分布直方图如右图.……4分
![]()
![]()
(求解频率3分,画图1分)
(Ⅱ)平均分为:
……7分
(Ⅲ)学生成绩在
的有
人,在
的有
人,
在
的有
人.并且
的可能取值是
. ………8分
则
;
;
;
;
.(每个1分)
所以
的分布列为
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
…………………13分
![]()
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com