题目列表(包括答案和解析)
设A={x||x-1|<2},B={x|
>0},则A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.
已知关于x的不等式|ax+2|<8的解集为(-3,5),则a=__________.
本题考查含绝对值不等式的解法.
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
解关于x的不等式|2x+m|<x-m(x∈R).
本题考查含有绝对值不等式的解法.解题关键是对m进行分类讨论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com