[考纲要求]掌握指数函数与对数函数的概念.图象.性质[复习建议]掌握指数函数与对数函数的概念以及相互间的关系.熟悉它们的图象.牢记主要的性质.会对这两种函数的底数分大于1和在(0.1)之间进行讨论.注意对数函数的真数要求.掌握几个数的大小比较方法.[双基回顾](见右表.注意指数函数与对数 函数是一对反函数)[知识点训练] 查看更多

 

题目列表(包括答案和解析)

学习曲线是1936年美国廉乃尔大学T.P.Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的.已知某类学习任务的学习曲线为:f(t)=
3
4+a•2-t
•100%(其中f(t))为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足f(2)=60%
(1)求f(t)的表达式,计算f(0)并说明f(0)的含义;
(2)已知2x>xln2对任意x>0恒成立,现定义
f(t)
t
为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间f∈(1,2)时,学习效率最佳,当学习效率最佳时,求学习效率指数相应的取值范围.

查看答案和解析>>

(本小题满分10分)

学习曲线是1936年美国廉乃尔大学T. P. Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的。已知某类学习任务的学习曲线为:为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足

(1)求的表达式,计算的含义;

(2)已知为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间时,学习效率最佳,当学习效率最佳时,求学习效率指数相应的取值范围。

 

查看答案和解析>>

学习曲线是1936年美国廉乃尔大学T.P.Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的.已知某类学习任务的学习曲线为:f(t)=•100%(其中f(t))为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足f(2)=60%
(1)求f(t)的表达式,计算f(0)并说明f(0)的含义;
(2)已知2x>xln2对任意x>0恒成立,现定义为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间f∈(1,2)时,学习效率最佳,当学习效率最佳时,求学习效率指数相应的取值范围.

查看答案和解析>>

学习曲线是1936年美国廉乃尔大学T.P.Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的.已知某类学习任务的学习曲线为:f(t)=数学公式•100%(其中f(t))为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足f(2)=60%
(1)求f(t)的表达式,计算f(0)并说明f(0)的含义;
(2)已知2x>xln2对任意x>0恒成立,现定义数学公式为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间f∈(1,2)时,学习效率最佳,当学习效率最佳时,求学习效率指数相应的取值范围.

查看答案和解析>>

学习曲线是1936年美国廉乃尔大学T.P.Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的.已知某类学习任务的学习曲线为:f(t)=•100%(其中f(t))为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足f(2)=60%
(1)求f(t)的表达式,计算f(0)并说明f(0)的含义;
(2)已知2x>xln2对任意x>0恒成立,现定义为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间f∈(1,2)时,学习效率最佳,当学习效率最佳时,求学习效率指数相应的取值范围.

查看答案和解析>>


同步练习册答案