已知.等差数列{}中..⑴求实数m,⑵求此数列的通项公式, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x2+m,其中m∈R.定义数列{an}如下:a1=0,an+1=f(an),n∈N*
(1)当m=1时,求a2,a3,a4的值;
(2)是否存在实数m,使a2,a3,a4构成公差不为0的等差数列?若存在,请求出实数m的值,若不存在,请说明理由;
(3)求证:当m大于
14
时,总能找到k∈N,使得ak大于2010.

查看答案和解析>>

已知各项均为正数的数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,满足a1=1,Tn=
4
3
-
1
3
(p-Sn)2
,其中p为常数.
(1)求p的值及数列{an}的通项公式;
(2)①是否存在正整数n,m,k(n<m<k),使得an,am,ak成等差数列?若存在,指出n,m,k的关系;若不存在,请说明理由;
②若对于任意的正整数n,都有an,2xan+1,2yan+2成等差数列,求出实数x,y的值.

查看答案和解析>>

数列{an}中,已知a1=1,n≥2时,an=
1
3
an-1+
2
3n-1
-
2
3
.数列{bn}满足:bn=3n-1(an+1)(n∈N*)
(1)证明:{bn}为等差数列,并求{bn}的通项公式;
(2)记数列{
an+1
n
}
的前n项和为Sn,若不等式
Sn-m
Sn+1-m
3m
3m+1
成立(m,n为正整数).求出所有符合条件的有序实数对(m,n).

查看答案和解析>>

已知数列{an}的通项公式为an=2+(n∈N*).
(1)求数列{an}的最大项;
(2)设bn=,试确定实常数p,使得{bn}为等比数列;
(3)设m,n,p∈N*,m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap是等差数列?如果存在,求出这三项;如果不存在,说明理由.

查看答案和解析>>

已知等差数列{an}满足a3=5,a5-2a2=3,又数列{bn}中,b1=3且
(I)求数列{an},{bn}的通项公式;
(II)若数列{an},{bn}的前n项和分别是Sn,Tn,且.求数列{cn}的前n项和Mn
(Ⅲ)若Mn对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>


同步练习册答案