题目列表(包括答案和解析)
| A.(-∞,10) | B.(10,+∞) | C.(-∞,9) | D.(9,+∞) |
已知函数
的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数
的值;
(Ⅱ)求
在区间
上的最大值;
(Ⅲ)对任意给定的正实数
,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当
时,
,则
。
依题意得:
,即
解得
第二问当
时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当
时,
,则
。
依题意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①当
时,
,令
得![]()
当
变化时,
的变化情况如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
极小值 |
单调递增 |
极大值 |
|
又
,
,
。∴
在
上的最大值为2.
②当
时,
.当
时,
,
最大值为0;
当
时,
在
上单调递增。∴
在
最大值为
。
综上,当
时,即
时,
在区间
上的最大值为2;
当
时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若
,则
代入(*)式得:![]()
即
,而此方程无解,因此
。此时
,
代入(*)式得:
即
(**)
令
,则![]()
∴
在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于
,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数
,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
答案
B
B
B
C
A
D
B
C
C
B
二、填空题:
题号
11
12
13
14
15
答案
1000
%20数学(文科).files/image225.gif)
%20数学(文科).files/image227.gif)
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分12分)
解:(1)由
=
,得:
=
,
即:
,
又∵0<
<
∴
=
.
(2)直线
方程为:
.
,
点
到直线
的距离为:
.
∵%20数学(文科).files/image251.gif)
∴
∴
又∵0<
<
,
∴sin
>0,cos
<0
∴
∴sin
-cos
=
17.(本小题满分12分)
解:(1)%20数学(文科).files/image262.gif)
某同学被抽到的概率为
设有
名男同学,则
,%20数学(文科).files/image271.gif)
男、女同学的人数分别为
(2)把
名男同学和
名女同学记为
,则选取两名同学的基本事件有%20数学(文科).files/image281.gif)
共
种,其中有一名女同学的有
种
选出的两名同学中恰有一名女同学的概率为
(3)
,%20数学(文科).files/image294.gif)
,%20数学(文科).files/image298.gif)
第二同学的实验更稳定
18.(本小题满分14分)
解:(1)
分别是棱
中点 %20数学(文科).files/image305.gif)
|