(2)若的面积为.求的值. 查看更多

 

题目列表(包括答案和解析)

△ABC的面积为S,三边长为a、b、c.
(1)求证:(a+b+c)2<4(ab+bc+ca)
(2)若S=(a+b)2-c2,a+b=4,求S的最大值.
(3)试比较a2+b2+c2的大小.

查看答案和解析>>

△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=
12
13

(Ⅰ)求
AB
AC

(Ⅱ)若c-b=1,求a的值.

查看答案和解析>>

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.

(1)的值;

(2)ABCabc分别是∠A∠B∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.

 

查看答案和解析>>

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数 图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

 

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空题:

题号

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

解:(1)由=,得:=

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直线6ec8aac122bd4f6e方程为:

                           

6ec8aac122bd4f6e到直线6ec8aac122bd4f6e的距离为:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小题满分12分)

解:(1)某同学被抽到的概率为

设有名男同学,则男、女同学的人数分别为

(2)把名男同学和名女同学记为,则选取两名同学的基本事件有种,其中有一名女同学的有

选出的两名同学中恰有一名女同学的概率为

(3)

第二同学的实验更稳定

                              

18.(本小题满分14分)

解:(1)分别是棱中点   

平面

是棱的中点            

平面

平面平面

(2)  

同理

      

  

,       

,,    

 

19.(本小题满分14分)

解:(1)由……①,得……②

②-①得:    

所以,求得     

(2)    

                                                     

 

 

20.(本小题满分14分)

解:(1)由题设知:

得:

解得椭圆的方程为

(2)

            

从而将求的最大值转化为求的最大值

是椭圆上的任一点,设,则有

时,取最大值   的最大值为

 

21.(本小题满分14分)

解:(1)由,,得,

所以,

(2)由题设得

对称轴方程为

由于上单调递增,则有

(Ⅰ)当时,有

(Ⅱ)当时,

设方程的根为

①若,则,有    解得

②若,即,有

          

由①②得

综合(Ⅰ), (Ⅱ)有