∴ ∴不成立 ∴的曲线上不存在两点.使得过这两点的切线互相垂直. 查看更多

 

题目列表(包括答案和解析)

已知双曲线C:
x2
4
-y2=1
和定点P(2,
1
2
)

(1)求过点P且与双曲线C只有一个公共点的直线方程;
(2)双曲线C上是否存在A,B两点,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

已知双曲线C:
x2
4
-y2=1
和定点P(2,
1
2
)

(1)求过点P且与双曲线C只有一个公共点的直线方程;
(2)双曲线C上是否存在A,B两点,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>


(本小题满分14分)
已知函数,当时,取得极小值.
(1)求的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.

查看答案和解析>>


同步练习册答案